近日,全球著名信息研究公司Gartner發布了2020年DSML(數據科學和機器學習)魔力象限。Gartner對IBM、微軟、谷歌、SAS、DataRobot在內的眾多知名科技企業進行了評測。評選的維度包括:易用性、模型、樣本、客戶滿意度、科技創新、發展潛力等。MathWorks旗下的MATLAB和SAS的VDMML再次被評選為該行業的領導者;而微軟、谷歌和IBM分別被評為潛力者和挑戰者。
Gartner將DSML平臺定義為核心產品和相關集成產品、組件、庫和框架(包括專有、合作伙伴和開源)的支持產品組合。它的主要用戶是專業數據科學人員。這些人員包括數據科學家、公民數據科學家、數據工程師和機器學習(ML)工程師/專業。
DSML平臺提供了基本和高級功能的混合,這些功能對于構建DSML解決方案至關重要(主要是預測和規范模型)。該平臺還支持將這些解決方案合并到實際業務流程,組織的基礎架構,產品和應用程序中,它在數據和分析中支持各種技能,包括以下領域:
-
數據提取
-
資料準備
-
數據探索
-
特征工程
-
模型創建和訓練
-
模型測試
-
部署方式
-
監控方式
-
數據維護
DSML平臺的多樣性,很大程度上反映了使用人群的廣泛性。因此,Gartner認為DSML的主要受眾人群如下:
專業數據科學家:他們具備理解和參與數據科學生命周期各個階段的技能和知識。大部分數據科學家將時間和精力花費在模型創建上,并由諸如數據工程師和ML工程師等支持角色來承擔數據搭建和MLOps職責。終身專業可以擔任數據科學經理的角色,可以使用平臺獲得對團隊完整項目組合的可見性,并促進協作和及時交付價值。
公民數據科學家:越來越多的公民數據科學家正在構建DSML模型。這些人需要訪問DSML功能,但不具備專業數據科學家的高級技能。公民數據科學家可以來自業務分析師,業務線(LOB)分析師,數據工程師和應用程序開發人員等職位。他們需要了解DSML市場的性質以及它與分析和商業智能(BI)市場有何不同,但又相互技術補充。公民數據科學家不會代替專業數據科學家,而是與他們合作。
支持角色:這些角色包括數據工程師、開發人員、機器學習工程師和其他角色。盡管不負責模型的建立,培訓和測試,但數據科學團隊的支持對擴展操作規模,確保數據質量和一致的模型準確性至關重要。
業務線(LOB)數據科學團隊:通常,這些都是由其LOB執行官贊助的,負責解決LOB主導的營銷、銷售、財務和R&D等方面的計劃。這些團隊專注于自己和部門的優先事項。與其他LOB數據科學團隊的協作級別有所不同。LOB數據科學團隊可以包括專業和公民數據科學家。支持角色可以駐留在LOB中,也可以從IT或其他領域分配。
企業數據科學團隊:這些團隊擁有強大而廣泛的高層管理人員充當,并且可以從整個企業范圍的可見性角度采取跨職能的觀點。除了支持數據模型構建外,他們還經常負責定義和支持用于構建和部署DSML模型的端到端流程。他們通常與多層組織中的LOB數據科學團隊合作。公司數據科學團隊通常包括專業數據科學家。支持角色可以駐留在公司數據科學團隊中,也可以從IT或其他領域分配。
資料顯示,此次被評選為DSML領導者的SAS創立于美國北卡羅來納州。主要提供了多種用于分析和數據科學的軟件產品,包括:支持統計、機器學習、文本分析、預測、時間序列分析、計量經濟學和數據優化。
SAS視覺數據挖掘和機器學習的產品VDMML是此次參選Gartner魔力象限評估的核心產品。VDMML集成了多種產品,包括可視化分析和可視化數據統計,主要針對業務分析師和公民/專業數據科學家。
未經允許不得轉載:RPA中國 | RPA全球生態 | 數字化勞動力 | RPA新聞 | 推動中國RPA生態發展 | 流 > Gartner發布2020年DSML魔力象限:IBM成唯一挑戰者,SAS被評為領導者
熱門信息
閱讀 (14728)
1 2023第三屆中國RPA+AI開發者大賽圓滿收官&獲獎名單公示閱讀 (13753)
2 《Market Insight:中國RPA市場發展洞察(2022)》報告正式發布 | RPA中國閱讀 (13055)
3 「RPA中國杯 · 第五屆RPA極客挑戰賽」成功舉辦及獲獎名單公示閱讀 (12964)
4 與科技共贏,與產業共進,第四屆ISIG中國產業智能大會成功召開閱讀 (11567)
5 《2022年中國流程挖掘行業研究報告》正式發布 | RPA中國