RPA醫療應用的三個偏見,這是最好的回應

      后臺-系統設置-擴展變量-手機廣告位-內容正文頂部

      世界衛生組織(WHO)的報告指出,美國每1000名患者僅對應2.5名醫療人員(在中國,這個數字是1.79),預計到2030年,美國的醫生人數缺口將達12萬,人員缺口巨大。

       

      為了緩解這個問題,醫療行業在數字化推廣方面花費了10年時間,耗費了360億美元,至今卻收效甚微,醫生們被各種工具所困,幾乎有一半的時間浪費在數據錄入上。

       

      其實,這其中的很多工作都可以借助RPA來完成。例如,填寫報告、錄入數據、檢查記錄等,而且RPA比人干得更好、更快。

       

      盡管自動化技術可以代替大量的重復勞動,但一些普遍存在的誤解讓許多醫療專業人士不愿去嘗試RPA技術。以下這三種“偏見”你可能聽過。

       

      偏見1:RPA只是舊的醫療自動化工具,  
          看不中用  
        

       

       

      如果你和醫療人員聊一聊這個話題,你會發現這些技術恰恰是他們最大的煩惱之一。總體而言,醫療服務提供商往往是新技術的最大買家之一,但具體到技術的執行和整合層面,他們遠遠落后于其他行業。

       

      幾十年來,醫療保健提供者一直在對能提高效率的技術進行投資。不過一朝被蛇咬十年怕井繩,比如屏幕抓取和ETL(Extract-Transform-Load)工具也曾承諾能夠以更快、更簡單的方式協調和移動數據,但最終效果都不如人意,這使得很多人懷疑RPA不過是“新瓶裝舊酒”。

       

      實際上,在與醫療服務提供商討論時,他們一開始會對RPA現在的能力感到很驚訝。很多人之所以沒有采用RPA技術,是因為忌憚多年前屏幕抓取技術的一些缺陷,卻并不知道這些缺陷已經成為了RPA技術的主要特點。我遇到的很多醫療服務提供商都以為RPA只是屏幕抓取的“換湯不換藥”版本。最基本的屏幕抓取技術已經是十幾年前的事,而RPA早已實現了超越。

       

      UiPath企業級RPA平臺具備選擇器、人工智能計算機視覺和其他AI功能,準確性方面和傳統的屏幕抓取技術早已不可同日而語。人工智能計算機視覺能夠以類似人眼的準確度檢測屏幕元素。數據輸出質量方面,RPA也比傳統的屏幕抓取更好。UiPath可以在16毫秒內實現100%準確的屏幕抓取,與傳統的光學字符識別(OCR)截然不同,大家都知道OCR技術脆弱且不準確。

       

      由于可以更快、更準確地抓取數據,RPA為醫生帶來的將不只是更多數據,還將帶來真正的自動化。

       

      因此,RPA不是什么老舊技術的“新瓶裝舊酒”,如果不消除這項偏見,就會很容易以為投資RPA只不過是再浪費一次錢。

       

      偏見2:RPA算不了什么,  
      AI才是未來!  
        

       

       

      盡管人工智能令人興奮,但很多人都被它的潛力分散了注意力。很多人都在等待下一個范式轉換,卻沒有意識到,如果他們不使用當前范式,就很難實現跨越式發展。

       

      事實是,人工智能并不能直接幫你解決所有煩惱。

       

      以亨利·J·凱澤家庭基金會(KFF)的研究為例,該研究顯示,40%的患者對電子健康記錄(EHRs)的準確性表示擔憂,21%的患者已表明自己的記錄中存在錯誤。在考慮人工智能之前,我們首先需要考慮構建確保數據完整性的流程。

       

      流程是自動化的基礎,如果你的流程本身沒有得到優化,那么不管是什么技術,最終都不會奏效。

       

      在可預見的未來,專業公司將會開發大量僅限于特定用例的AI應用程序,看看Gartner的人工智能熱點調查報告,RPA后面緊跟著各種自動化技術,包括機器學習(ML)、智能機器人和自然語言處理(NLP)。

       

      人工智能和自動化不會只由某一項技術或某一家公司提供,它需要多個系統攜手才能共舉。

       

      一些醫療機構認為,等待一個完全集成的醫療系統才是更明智的投資選擇。事實上,大規模的技術革命往往需要很長時間。

       

      我們應該盡力去建設一個集中式的健康記錄中心和一個民主化的健康數據平臺。同時,不要忘記我們正面臨著醫生短缺的現狀,病患的就診體驗會受其影響,為了建立完善系統而盲目等待是不負責任的表現。

       

      RPA可以為您提供數字化勞動力,并且當下就能提供實際產出。RPA不是暫時解決產能問題的創可貼——它是連接上一個醫療技術時代和下一個醫療技術時代的橋梁。

       

      偏見3:我們不是已經

      有機器人流程自動化RPA了嗎?

        

       

      我遇到的最常見的偏見之一就是醫療行業已經實現了自動化,他們已經不需要其他自動化技術。

       

      實際上,現有的自動化工具都是基于項目或者基于任務,而非系統性地解決問題——它們在開發時大多是為了快速解決問題,從設計上來說也是一次性、封閉式的。

       

      也就是說你可能擁有好幾十種不同的自動化工具,它們通常能夠自顧自地運行下去,直到有一天它們突然壞了。這些工具通常需要定期重建,它們的輸出結果也往往值得懷疑。而且,流程一旦發生變化,你在這個自動化工具里投入的錢也會付之東流。

       

      醫療行業效率低下的罪魁禍首是糟糕的變革管理。醫療行業有太多的工具,它們在不同的層次上運行,這讓變革管理變得極為困難。造成這個問題的一部分原因在于人才和需求不匹配——醫療服務提供商經常會聘請沒有絲毫部署經驗的人,或者雇傭部署經驗豐富但對數據科學一無所知的人。

       

      如果你看過Damo Consulting的2019年醫療IT需求調查你就會發現,挑戰并不在于缺乏足夠的工具。79%的醫療機構高層認為,數據孤島和系統之間缺乏互操作性是當下最大的問題。糟糕的部署水平,讓本就孤立的工具受限于有限的數據集,最終導致糟糕的部署結果。

       

      我們經常看到護士在幾個工具之間來回切換,匯總病歷報告并把它輸入AI工具,再把AI工具的結果重新輸回HER中。部分自動化的手動流程并不能算自動化。當你在培訓、排除故障和解決Bug時,這些孤立的軟件工具更像是障礙而不是什么優勢。

       

      這里的問題是相互孤立的技術之間不能互相操作。這意味著技術之間的流程很可能仍然是手動、耗時的。

       

      最后,你可能會有“機器人”,也可能會有“自動化”或者一大堆技術,但是這些如果不能協同工作,你的潛力就會受到限制。

       

      像UiPath這樣的RPA平臺,其關鍵優勢就在于它提供了一套整體解決方案。你可以讓已有的工具相互操作,進而為整合新的技術方案奠定基礎。使用UiPath,您可以開發成百個機器人,并且永遠不會損失哪怕是一個許可證的成本。

       

      問題總會繼續存在,

      也總會需要新的解決方案

        

       

      2018年Physicians Foundation和Merritt Hawkins的一項研究表明,79%的醫生認為他們的工作滿足感來自良好的醫患關系,這一點兒也不奇怪。該研究同時表明,78%的醫生曾感到失望。盡管具體的因果關系很難追蹤,但是仔細想想,目前臨床醫生有超過一半的工作時間用來察看病例而不是照看病人,你就可以想象這些總是無法完成的工作為醫生帶來的困擾與疲倦。

       

      盡管市面上和電腦里已經有那么多軟件可用,可是如果你仔細看看整個醫療行業正在面臨的挑戰,你會發現問題依舊在那里。

       

      紙張的出現在一定時間內彌補了醫生記憶力不足的問題,同時,EHR和其他技術是對這個問題更好的解決方案。但是,有了這樣的解決方案并不一定意味著問題得到了最終解決。

       

      像UiPath這樣的平臺能夠帶來真正的變革。它們不會為醫生增加負擔——與之相反,它們的主旨就在于消除苦力。消除苦力可以幫助醫生減少疲勞,進而改善患者體驗。

       

      了解更多有關RPA消除醫療服務提供商日常任務的具體內容,請您點擊“閱讀原文”下載白皮書。

       

      文章作者:Jason Warrelmann, uipath全球醫療和生命科學總監

       

      ?

      未經允許不得轉載:RPA中國 | RPA全球生態 | 數字化勞動力 | RPA新聞 | 推動中國RPA生態發展 | 流 > RPA醫療應用的三個偏見,這是最好的回應

      后臺-系統設置-擴展變量-手機廣告位-內容正文底部
      主站蜘蛛池模板: 阿合奇县| 海原县| 南川市| 泸溪县| 汪清县| 安康市| 清新县| 灵寿县| 宝坻区| 林甸县| 常州市| 荥阳市| 平昌县| 博兴县| 田东县| 徐闻县| 岑溪市| 凤台县| 濮阳县| 湖口县| 环江| 海阳市| 石嘴山市| 灵山县| 教育| 虞城县| 启东市| 平南县| 城步| 巴南区| 青海省| 苍南县| 东阿县| 巫山县| 阿拉善左旗| 城固县| 陇西县| 堆龙德庆县| 桦甸市| 崇礼县| 日土县|